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Abstract—Controlling the body requires self-explorative behav-
ior as well as the ability to build a model of the body. This model
does not need to explicitly encode body shape, joint positions, and
so on, but can just as well be built up implicitly. We introduce
Quadric-Representing Neurons (QRENs) and show why they are
very well-suited to model the plurality of body morphologies.
QRENs can be either learned in a batch manner or on-the-fly
in real-time. They possess the important property to extrapolate
behavioral manifolds from a reduced and localized sensorimotor
data set. QRENs can be used to elegantly control a robot’s body
in a straightforward way. We comment on how QRENs have
the potential to allow for modular and hierarchical learning
strategies.

I. INTRODUCTION

Learning how to control the body within a given envi-
ronment is a fundamental perceptual task. It requires self-
explorative behavior and at the same time the ability to build a
model of the body – be it a human being, animal, or robot. In
biological systems, information of body posture is available in
real-time by afferent proprioceptive sensory signals, but there
is no such sensory signal which is directly informative about
the body’s size and shape. Although the need for a stored body
model has been recognized for quite some time, only recently
techniques have been introduced to systematically isolate and
measure this model for one limb: in [1] the authors produced
maps of the mental representation of people’s hand size and
shape.

Clearly, body models do not need to explicitly encode body
shape, joint positions, lengths and mass distributions of the
limbs. This would only be required if a robot is to be driven
using inverse kinematics, like with industrial robots, where
this is still the preferred method. A large amount of literature
is dealing with optimal control of smooth motion trajectories,
whilst circumnavigating singularities of the inverse model; for
an overview see [2]. Body models can just as well be built up
implicitly. One example how information about the full body
size of a segmented artificial organism can emerge within each
body segment using a local homeostatic learning rule can be
found in [3].

In the paper at hand we introduce Quadric-Representing
Neurons (QRENs) and show why they are very well-suited
to model the plurality of body morphologies. The remaining
sections are organized as follows. We first define quadrics,

describe what they are able to represent geometrically, and
introduce QRENs by using quadrics as kernel functions. Then,
we describe the different body morphologies under investiga-
tion and give examples on how the body morphologies are
mapped onto the QRENs. We discuss learning with small data
sets, show how a robot can be controlled by using the QRENs,
and finally comment on the QRENs’ potential to allow for
modular and hierarchical learning strategies.

II. QUADRICS AND QRENS

A quadric Q is a surface defined by an algebraic equation
of degree two. Formally, we have

Q = {x ∈ Rn | xTAx+ bx+ c = 0}, (1)

where A ∈ Rn×n symmetric, b ∈ Rn, and c ∈ R. The vector
notation is neat and advantageous if we need the eigenvalues
and eigenvectors of A. This is the case if we want to normalize
the quadric, i.e., successively get rid of the mixed terms of
order two (off-diagonal elements of A are all zero) and, if
possible, also the linear terms (b = 0) and the constant
(c = 0). Using the normalized standard form, quadrics can be
categorized, and for n = 3 also be visualized. Some examples
are shown in figure 1. A parabolic cylinder, a hyperboloid of
one sheet, and two parallel planes are respectively defined by

x21 − x2 = 0,

x21 + x22 − x23 − 1 = 0,

x21 − 1 = 0.

Quadrics play an important role in algebraic geometry. We can
link quadrics to robot morphologies which are situated in an
environment by identifying the variables with sensor values.
This will briefly be addressed in the following section.

Figure 1. Three examples of different quadrics in R3, namely a parabolic
cylinder, a hyperboloid of one sheet, and two parallel planes (from left to
right).



A. Why Second Order is Sufficient

For a large range of robots quadrics are able to describe
invariants, i.e., when choosing the appropriate coefficients, the
quadric stays zero for a specific subset of the robot’s config-
urations. In other words, quadrics exist, which are invariant
under some type of the robot’s behavior. This is inter alia the
case for robot arms with a series of revolute joints [4].

Why is it sufficient to use a second order polynomial to get
a behavior-invariant constant expression? This depends on the
type of sensor values used. Let us assume we have a robot
arm with two revolute joints in series and arbitrary angular
ranges and segment lengths of the arm. We are interested
in all configurations where the robot touches a plane. If we
use angular sensor values, then we have the trivial case, that
the sum of the angles remains constant. If we use cartesian
coordinates (e.g., if the sensor values are derived from an
image of the scene), then we have

x1 = r cosϕ, x2 = r sinϕ, (2)

for a single joint. Obviously, we get a constant expression by
squaring and summing. If we use a completely different type
of sensor value, namely acceleration forces of sensors mounted
on the robot arm, then again the squared sum of all values will
be constant and represent the static gravitational force. This
is of course only exactly true for moderately slow motions of
angular joints, but approximately still holds otherwise. All in
all, there is good reason why quadrics are sufficiently accurate
to describe behavioral relationships between a robot’s body
and the environment.

B. Using Quadrics as Kernel Functions

The main idea of a QREN is to use quadrics as kernel
functions and let the QREN indicate the presence of a specific
behavioral mode of a robot within a given environmental
context.

Since we are not interested in normalizing and categorizing
the quadric but want to learn the quadric in real-time, it is
advantageous to switch from matrix notation to the following
notation:

Q = {x ∈ Rn | wT fn(x) = 0}, (3)

where fn : Rn → Rm is the expansion of x including all
quadratic terms and the constant 1, w ∈ Rm is a weight vector,
and m = n(n+3)

2 + 1.
We are now ready to define the output of a QREN as follows:

qw(x) = e−(w
T fn(x))

2

. (4)

Clearly, qw(x) acts as an indicator neuron, as we have

qw(x) = 1 ⇐⇒ x ∈ Q. (5)

The more x is distant from Q, the more qw is close to
zero. Please note, that w is only defined uniquely up to
a multiplicative factor. We therefore have to normalize w
in some way, if we want to compare the output signals of
different QRENs to find out which quadric x is closer to. A
straightforward approach would be to demand ‖x‖ = 1, but

we already succeeded with the even easier trick to always have
the quadric’s constant term equal one (we get more explicit
below).

In other fields, there exists quite some literature on how to fit
the parameters of a quadric to a given data set, mostly for data
stemming from stereo images or laser range measurements,
e.g., see [5], [6], or, very recently, [7]. But also more general
approaches have already been addressed [8]. There exist
comparative surveys on the quality of different methods, as
in [9] and [10], as well as reports on stability [11]. Of specific
interest for our QRENs is the comparative survey of neural
learning rules in [12], most standard methods of which can
be applied here. Using a competitive neural network with a
simple delta rule will already work well when learning several
QRENs simultaneously. In this paper, we will not go into
detail concerning the selection of an appropriate learning rule,
but focus on the peculiarities of robot learning, namely, that
sensory data from real behaviors will mostly only cover a
small part of a full quadric. Therefore, we are interested in
the QRENs’ extrapolating abilities.

For what follows we use n = 3, so the parameter vector to
be learned is of dimension m = 10. We have

x = (x1 x2 x3)
T
,

f3(x) =
(
x21 x

2
2 x

2
3 x1x2 x2x3 x1x3 x1 x2 x3 1

)T
,

w = (w1 w2 . . . w10)
T
,

where we demand w10 = 1 during the least squares fitting
of w. Coefficients shown in the section on experiments will
always be in the order w1, w2, . . . , w9. Since w10 = 1 by
construction, this coefficient will be omitted.

III. DIFFERENT BODY MORPHOLOGIES

For the investigation of the QRENs’ properties, the two
robots SEMNI and Myon have been used, which significantly
differ in size, mass, actuation, and overall morphology. They
will briefly be described within the following subsections.

Despite their different properties, they are equipped with
the same data interface, so data acquisition and experimental
setting could be identical for both hardware platforms. Thus,
it can be excluded that resulting body models are distorted
systematically due to platform-dependent data quality (e.g.
noise, resolution, sampling rate). Sensorimotor loops have
always been guaranteed to run tightly at a rate of 100 Hz.

A. The Self-Exploring Robot SEMNI

The acronym SEMNI stands for Self-Exploring Multi-Neural
Individual – and that is exactly the purpose the robot has
been built for. It possesses only two degrees of freedom: one
revolute joint at the hip, and another one at the knee, as can
be seen in figure 2.

Proprioceptive sensors continuously measure the current and
temperature of each actuator, the angular positions of both
joints and the acceleration forces within the robot’s mid-
sagittal plane, relative to the center of the printed circuit board
in the head. Thus, there are two motor values and eight sensor
values per 10 ms time slot.



The actuators can be controlled in various ways. For the
experiments reported here, we choose a constant velocity
paradigm to always keep the robot in motion at a moderate
speed. This way, we can omit the robot’s velocity vector and
restrict ourselves to the analysis of the manifold

Mr = {(ϕh, ϕk, ϕb) ∈ R3 | χr(ϕh, ϕk, ϕb) = 1}, (6)

where ϕh, ϕk and ϕb are the angular positions of the hip joint,
knee joint and the robot’s body, the latter being measured rel-
ative to the horizontal ground surface. Due to the moderately
slow motion, the horizontal and vertical acceleration forces Fh

and Fv are dominated by the earth’s gravitational force, so the
body position can be calculated as ϕb = arctan(Fv/Fh).

The characteristic function χr equals one, iff its argument
represents a body posture which the robot can reach and
hold on its own. Thus, the manifold Mr is defined by all
reachable body positions on a flat ground, without using
dynamic motions and excluding transient motions when the
robot falls over.

Obviously, Mr completely depends on the robot’s body
shape, moving abilities, and environment. It can thus be
regarded as an implicit body model of the robot, situated
in a fixed environment. Whenever the robot is at rest, its
body posture and position relative to the ground correspond
to a point p ∈ Mr. So, at low velocities, we stay within
Mr, whereas dynamic motions temporarily leave Mr, be they
induced by the robot’s motors or by tumbling accidentally.

Having noted this, we are now able to inspect Mr for SEMNI
on a flat ground. Please refer to figure 3 for the following
explanation. The manifold has been cut into four parts. We
start with the bottom left image, which corresponds to the
situations where the robot is lying on its front side (i.e., 90
degrees counter-clockwise from the position shown in figure
2). The xy-position corresponds to the posture of the leg, with
the horizontal position representing the joint angle of the hip,
and the vertical position that of the knee.

Figure 2. Left: The 30 cm tall robot SEMNI standing in an upright position.
Proprioceptive sensors are located within the actuators (hip, knee) and on the
printed circuit board in the head. The robot is facing to the left, with the leg
standing on the back side. Right: Head, torso, and right arm of the modular
humanoid research robot Myon. The black solid line indicates the area which
can be reached by the arm. The hand is not attached in this experiment.

The border of the missing corner (top right white part of the
image) represents all leg postures where the foot touches the
back part of the head. For each xy-position (i.e., leg posture)
the color encodes the body’s angle relative to the ground. The
darker the blue, the more the head is near the ground, whereas
the darker the red, the more the head is in the air. The pale
greyish regions indicate leg postures where the robot’s body
is lying on the ground horizontally.

As can be seen, the robot is tilted a bit in one or the other
direction, depending on where the barycenter of the leg is,
relative to the hip joint. Now, the robot is starting to sit up, if
the leg is following a specific trajectory, which is shown in the
top left image. Coming from the bottom left and continuing
to the top right (in the image), the robot is quickly raising its
head and then falling over – either onto its back or back to
the front again. This can be seen in the two bottom images
by the isolated blue dots which correspond to impacts of
the robot’s body. Obviously, the manifold has borders which
correspond either to the joints’ end positions, or to unstable
body positions. In the former case we are just stuck, whereas
in the latter case, we fall off the manifold and back onto it to
another place.

The two images on the right side are analogous to the left
ones, but describe the robot starting from lying on its back.
The darkest blue positions correspond to the robot performing
a headstand. Due to the leg length and slow motion, the robot
is not able to do a backward somersault on the ground. When
speeding up the motion, this is indeed possible.

Summing up, the manifold Mr, which describes SEMNI’s
capabilities during moderately slow motions, is already com-
plex enough to be of interest for building up an implicit body
model. As we will see later, only few QRENs are needed to
accurately capture Mr.

-
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Figure 3. A sampled version of the manifold Mr of the robot SEMNI,
situated on a flat ground. It indicates the body posture (xy-coordinates) and
body position relative to the ground (color-coded). See text for an explanation.



B. The Humanoid Robot Myon

Since the shape and configuration of SEMNI is rather
uncommon, we choose a more standard scenario for additional
tests of the QRENs. The humanoid robot Myon is a modular
research robot, the body parts of which can be detached and
reattached during run-time, since they all possess their own
processing power and energy supply. Figure 2 shows Myon
composed of three body parts, namely the torso, the head,
and the right arm. This is the experimental setting we used to
record sensory data when the arm was moving, while the end
of the arm was touching the table.

IV. EXPERIMENTS AND RESULTS

In order to put the QRENs to test, we first recorded sensory
data of the robot SEMNI while it was touching the ground
with both feet. This is a somehow artificial situation, since
only part of the poses are stable and we had to hold the robot
still in place to get the rest of the data. The result can be seen
in figure 4. This is obviously an elliptic hyperboloid of the
kind shown in middle of figure 1.

We then attached a QREN to the behavioral primitive
standing-on-the-ground-with-both-feet by fitting the corre-
sponding weights using a least squares approach. The weights
are shown by the crosses in figure 5. To check the quality of the
fit, we calculated the QREN’s kernel function for the original
raw sensory data, sorted the results in descending order, and
plotted the result in figure 6. As can be seen, the QREN quite
nicely fits the original data – the error remains small, even
without having filtered the raw sensor values beforehand.
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Figure 4. Sensory data of the robot SEMNI which has been recorded while
the robot was touching the ground with both feet, like shown in figure 2.
The xy-plane encodes the angular position of the joints in the same way as
in figure 3. The z-axis shows the body’s angle relative to the ground, the
standing position being at z = π/2.

A. Using Massively Reduced Data Sets

The weight vector contains nine free parameters, so only
nine out of the over 30.000 data values are sufficient to fully
specify the QREN. In order to find out how much the weight
vector varies depending on the data sample, we randomly
picked nine data values and calculated the weights. This has
been repeated 50 times and plotted together, as shown in figure
7. Obviously, there is not much variance, since the sampled
values are far apart by chance. The subset-depending weight
vector variance is of more behavioral relevance, if the subset
is not spread over the whole raw values, but localized. This is
equivalent to sampling the stream of sensor values over a short
time period, where the pose of the robot does not change too
much. We used the lower corner of the hyperbolic ellipsoid,
as the robot passes through this part during exploration (see
figure 3). The used subset is shown in figure 8 and the
result can be found in figure 5 by comparing the crosses (full
data set) with the solid dots (localized subset of the data).
The differences are almost unnoticeable, which illustrates the
QRENs’ excellent extrapolation characteristics. This in turn
allows for feeding the very first quadric estimates back to the
control of exploration – the QRENs can very soon help to steer
the direction of exploration.
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Figure 5. Crosses: weight vector of the elliptic hyperboloid which optimally
fits the robot’s sensory data. Solid dots: weight vector found by the least
squares approach when using only a small subset of the data.

20000100050000

0.20

0.15

0.10

0.05

0.00
30000

Figure 6. Values of the QREN’s kernel function for all original sensor values,
sorted in descending order. The error remains small, even without having
filtered the data.
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Figure 7. The weight vector does not change very much when only nine
random samples from the whole data set are drawn for parameter calculation.
The process has been repeated 50 times.



B. Fitting the Quadric of a Moving Arm

Next, we used the angular data which we recorded using
the arm of the humanoid robot Myon, as shown in figure 2.
The arm was moving in all directions, while the end of the
arm was touching the table all the time.

The raw sensory data is shown in figure 9 and reveals part of
an ellipsoid. The corresponding weight vector can be found in
figure 10. Although the raw data forms less than one eights of
a full ellipsoid, again, the quadric which has been fitted by the
QREN is as close to the sensory data as in the former case of
the hyperboloid. Due to the limited space, we do not explicitly
show the model and the quality of fit here. Interestingly, we
also got an ellipsoid when used the acceleration sensors instead
of the angular ones.

C. Quadric-Based Movements

Since QRENs represent quadrics that encode an implicit
body model of a robot given in a specific environment, they are
of behavioral relevance. As it turns out, the weight vector of a
QREN can be used in a straightforward manner to purposefully
control a robot’s motion.
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Figure 8. Localized subset of the full sensory data which has been used to
test the QRENs’ extrapolation abilities.
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Figure 9. Raw angular sensor data of the three joints of Myon’s right arm,
as shown in figure 2. Obviously, the data can be modeled by an ellipsoid.
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Figure 10. Weight vector of the ellipsoid which best fits the sensor data of
Myon’s moving arm.

The following example will illustrate this. Say we want the
robot SEMNI enable to sit-up from arbitrary starting postures.
There are many target positions for the robot to stand upright
and they all lie on the hyperboloid shown in figure 4. To be
more precise, they satisfy the two conditions:

wT f3
(
(ϕh ϕk ϕb)

T
)

= 0, (7)
ϕb = π/2. (8)

Using the well-known gradient descent, we control the
voltage of the hip actuator (Uh) and of the knee actuator (Uk)
as follows:

Uh = −µwT f3 (x̂)
dwT f3
dϕh

(x̂) , (9)

Uk = −µwT f3 (x̂)
dwT f3
dϕk

(x̂) , (10)

where µ is a fixed motor constant and

x̂ = (ϕh ϕk
π

2
)T (11)

is the current posture, but with ϕb clamped to the desired
target value. Of course this approach can also be used to define
arbitrary targets, e.g., stretching the leg (ϕk = 0).

Figure 11. Series of snapshots (top to down) illustrating two different sit-up
motions of the robot SEMNI. Left column: Starting with the robot’s front side
facing the ground. Right column: Starting with the robot’s front side looking
away from the ground.



For the experimental setup with the robot Myon this would
include lifting the arm to arbitrary heights above the table.
Of course sensory signals from the vision system need to be
recruited during the learning process in first place, but after
that the robot is able to reach a target position blindly.

Figure 11 shows the results after implementation of the
aforementioned motion control loop. The robot successfully
sits up from different starting postures and, as a consequence,
also stops in an upright position with different leg postures.
The motion trajectories are highly efficient in the sense that
as less movements as possible are being executed.

D. Speeding Up the Learning Process

As already mentioned above, a standard competitive neural
network, where only the winning QREN is updated by the delta
rule, will learn the manifold of a robot, like the one shown
in figure 3. Using the sensory information in a smart way,
one can considerably speed up the learning process. Figure
12 shows the impacts of SEMNI’s body. They are derived
from the acceleration data. Since we used a moderately slow
motion for the exploration of the robot’s behavioral manifold,
those impacts can only be due to jumps off and back onto
the manifold (also see the isolated dots in figure 3). This
information can be used to introduce new QRENs in early
stages of the learning process.

Another strategy uses the current sensors of each actuator:
Whenever a stall current situation is detected, a specific QREN
is learned. This QREN will soon anticipate self-harm of the
robot and most likely be representing a quadric with two
parallel planes, as shown in figure 1, right. Finally, referring to
the QREN’s excellent extrapolation characteristics, and using
the quadric-based motion control we introduced, it is a good
idea to explore the manifold QREN by QREN. This reduces
the amount of impacts which could potentially harm the robot,
and, at the same time, improves the accuracy of the QREN
which is currently active.

V. CONCLUSION AND OUTLOOK

We have formally introduced QRENs and given experimen-
tal evidence that they are able to implicitly model different
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Figure 12. Sensory information of the type shown here can be used to
speed up the learning process. Top: Squared sum of the three perpendicular
acceleration forces minus the squared static value of the earth’s gravitation.
Bottom: Smoothed and normalized absolute value of the above curve.

body morphologies and motion capabilities. QRENs can be
learned using standard methods, but we also outlined how sen-
sory information can be used to speed up the learning process.
For a single QREN first results concerning the dependence
on the data set have been presented. They show the QREN’s
robustness and extrapolating capabilities.

There are two very promising directions, we would finally
like to comment on. First, when modeling behavioral manifold
by multiple quadrics the latter will intersect. So-called QSICs
(Quadric Surfaces Intersection Curves), see [13] for a clas-
sification, show up. Those QSICs are behaviorally of special
interest, because a robot who will spend most of its time on
QSICs will have better options of quickly doing one or the
other.

Second, the scalar output of a quadric can serve as a
virtual sensor. We intend to use this approach for the modular
humanoid robot Myon. If a QREN is able to encode the
behavioral condition, that a leg or arm stands upright (like
shown with the robot SEMNI), the scalar output of another
QREN can encode the height of the limb relative to the ground
(like with the arm of Myon). This way, QRENs inside the
torso can make use of this virtual sensor information to model
crawling, walking, and the like.
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